How do geographic distances translate into genetic distances?

Emmanuel Scherzer. Joint work with V. Miro Pina.

September 7, 2017
Part 1: Biological motivation
Speciation

- **Speciation**: when two subpopulations accumulate enough genetic differences, they become genetically incompatible.
 1. Pre-zygotic isolation: preferential mating.
 2. Post-zygotic isolation: hybrid depression.

- It is well established (e.g., Malécot) that geographic structure affects the genetic diversity of a population.

- We aim at modeling the genetic divergence of populations in a structured population.

- General question: **Under which geographical conditions can a species remain genetically coherant?** or at the contrary, under which conditions can speciation occur? how long does it take?
How do populations diverge (I)? Rugged fitness landscape

- Fitness landscape: each genotype gets assigned a fitness value.
- According to Wright (1931): fitness landscapes should have local adaptive peaks separated by adaptive valleys.
- Adaptive peaks are interpreted as different species
- Adaptive valleys are interpreted as unfit hybrids
Rugged fitness landscape.

- Speciation occurs when a sub-population goes from one peak to the other.
- Need to pass through a valley.
- Intuitive idea of Wright: **founder effect**.
- In a small enough population, genetic drift is strong enough to counterbalance the effect of selection.
- **Example**: Diploid population. Genome only consists of a single locus with two alleles a and A with

 $w_{aa} = 1, w_{aA} = 1 - s, w_{AA} = 1$

- When $ns = 20$ (say a population size of 200 and a fitness penalty of $s = 0.1$), the probability to cross the valley is approximately 10^{-8} to cross the valley.
How do populations diverge (II)? Holey landscape

Alternative topography: Local maxima could be be partitioned into connected sets (or **evolutionary ridges**).

Holey landscape: Evolutionary ridges typically have complicated geometry.

Speciation: a population diffuses until it stands at the other side of a hole.

Maynard Smith (1970) : “if evolution by natural selection is to occur, functional proteins must form a continuous network which can be traversed by unit mutational steps without passing through nonfunctional intermediates”.

How do populations diverge (II) ? Holey landscape

- Alternative topography: Local maxima could be partitioned into connected sets (or evolutionary ridges)
- Holey landscape: Evolutionary ridges typically have complicated geometry
- Speciation: a population diffuses until it stands at the other side of a hole
- Maynard Smith (1970) : “if evolution by natural selection is to occur, functional proteins must form a continuous network which can be traversed by unit mutational steps without passing through nonfunctional intermediates”.
Holey landscape. Dobzhansky model (1967)

- two loci with two alleles aA and bB respectively.
- $w_{aa**} = w_{**BB} = 1$ but any other genotype gets assigned a fitness value $1 - s$.
- Starting from a population $aaBB$, the population can drift in two ways: either to $aabb$ or $AABB$.
- Finally, any recombination of types $aabb$ and $AABB$ produce an unfit individual.
Rugged vs Holey landscape

- **Experimental justification**: Orr (1995) identified pairs of loci on the Drosophila chromosome suggesting a Dobzhansky-type mechanism.

- **Theoretical justification**: In high-dimensional genotype space, fitness peaks are typically related by evolutionary ridges.

- Gavrilets and Gravener (1997) used a simple percolation model on the hypercube \(\{0, 1\}^n \).

- A genome is viable (resp., unviable) with probability \(p \) (resp., \(1 - p \)).

- When \(p > 1/n \), as \(n \to \infty \), the size of the largest viable connected component (or evolutionary ridge) goes to \(\infty \) at a speed \(O(p2^n) \).

- The classical NK model exhibits similar behavior in high dimension (quasi-Holey landscape).

- **Ignore deleterious mutations.** In large populations, they are washed away by selection at the micro-evolutionary scale.

- **Describe the dynamics on the evolutionary ridge as neutral** (Any genotypes on the ridge can be accessed by single-mutation neutral steps)

- **Evolutionary dynamics along an evolutionary ridge is assumed to be slow.** Along the evolutionary ridge, random mutations are very likely to be deleterious.
Part II: Individual based model, Main results
Individual based model

- Multi-locus Moran model with mutation and migration.
- Structured population: pop. is subdivided into N subpopulations. Island i is composed by n_i individuals.
- Each individual is identified with a chromosome of size 1.
- $l = \#$ of Loci responsible for speciation.
- loci are distributed uniformly along the chromosome.
An underlying individual based model

- **Reproduction:** haploid Moran model with recombination
 - Each ind. reproduces at rate 1, chooses a random partner.
 - Their offspring replaces a randomly chosen ind.
 - **Recombination:** Offspring is a obtained by pasting together fragments of the parents chromosomes.
 - Number of cross-overs follows \(\text{Poisson}(\lambda) \)
An underlying individual based model

- **Reproduction**: haploid Moran model with recombination

- **Mutation**: at rate u per individual per locus (infinite allele model).

- **Migration**: $i \rightarrow j$, at rate m_{ij}. A copy of one random individual in i migrates from i to j, and replaces an individual chosen uniformly at random in population j.
An underlying individual based model

- **Reproduction**: haploid Moran model with recombination

- **Mutation**: at rate u per individual per locus (infinite allele model).

- **Migration** $i \to j$, at rate m_{ij}. A copy of one random individual in i migrates from i to j, and replaces an individual chosen uniformly at random in population j.

 - migration tends to reduce the genetic distances between subpopulation (homogenization effect)
 - mutation tends to increase distances
Scaling limit

We will consider the following regime

\[u, m_{i,j} \ll \frac{1}{n_i}, \frac{1}{l} \ll 1 \]

low mut.–migr. large pop.

- In the usual so-called weak limit regime (structured Kingman coalescent – Wright-Fisher diffusion with mutation-migration), it is assumed that
 \[m_{i,j}, u = O(\epsilon), \quad 1/\epsilon \text{ is a typical population size} \]

- In the weak limit regime, at a given locus, there is a non-trivial polymorphism at the intra-population level.

- Here, we assume that mutation events and migration events are rare so that intra-population diversity can be neglected at the limit.

- This will allow to approximate our IBM model by a PBM.

- Rationale: Along the evolutionary ridge, changes occur at the macro-evolutionary time-scale
In order to implement the regime

\[u, m_{i,j} \ll \frac{1}{n_i}, \frac{1}{l} \ll 1 \]

low mut.–migr. large pop.

We assume that the parameters of our model \((n_i, m_{i,j}, u, l)\) depend on two scaling factors \((\epsilon, \gamma)\) with

\[
\begin{align*}
 n_i &\equiv n_i^\epsilon \quad \text{with } \epsilon n_i^\epsilon \to N_i \\
l &\equiv l^\epsilon \quad \text{with } l^\epsilon \to \infty
\end{align*}
\]

(\(1/\epsilon\) typical size of a population, \(l^\epsilon\) typical number of loci involved in speciation) and

\[
\begin{align*}
m_{i,j} &\equiv m_{i,j}^{\gamma} \quad \text{with } \frac{1}{\gamma} m_{i,j}^{\gamma} \to M_{i,j} \\
u &\equiv u^{\gamma,\epsilon} \quad \text{with } \frac{1}{\gamma \epsilon} u^{\gamma,\epsilon} \to U_\infty
\end{align*}
\]

(\(\gamma\) typical rate of migration)

Then we let successively \(\gamma\) and then \(\epsilon\) go to 0 (so that \(\epsilon \gg \gamma\)).

Note that and \(u/m_{i,j} = O(\epsilon)\) (balance mutation/migration).
Distance between islands

- We aim at describing the genetic distance between islands.
- When $\epsilon \gg \gamma$, sub-populations are typically monomorphic.
- When island i and j are monomorphic, define
 \[
d_{t,\gamma}(i,j) = \frac{1}{i} \#\text{segregating loci between island } i \text{ and } j \text{ at time } t.
 \]
 (otherwise take the average number of segregating sites between two randomly sampled individuals)
- The genetic distance between two populations evolve when one or several alleles fixate in the a population following a mutation or migration event.
- Since those events are rare, we accelerate time by $1/\gamma \epsilon$
Theorem 1 (Miro Pina, S.)

When island \(i\) and \(j\) are monomorphic, define

\[
d_{t}^{\epsilon,\gamma}(i,j) = \frac{1}{l} \# \text{segregating loci between island } i \text{ and } j \text{ at time } t.
\]

For every \(i, j\), there is a deterministic process \((D_{t}(i,j); t \geq 0)\) s.t.:

\[
\lim_{\epsilon \to 0} \lim_{\gamma \to 0} \left(d_{t}^{\epsilon,\gamma}(i,j); t \geq 0 \right) = (D_{t}(i,j); t \geq 0) \text{ in distribution (in the weak topology)}.
\]

Moreover \(\lim_{t \to \infty} D_{t}(i,j) = 1 - \mathbb{E}(e^{-2U_{\infty} \tau_{ij}})\), where

\[
\tau_{ij} = \inf\{ t \geq 0 : S^{i}(t) = S^{j}(t) \},
\]

and where \(S^{i}\) and \(S^{j}\) are two independent random walks on \(\{1, \cdots, N\}\) starting respectively from \(i\) and \(j\) and whose transition rate from \(k\) to \(l\) is given by

\[
\tilde{M}_{kl} := \frac{M_{lk}}{N_k} \quad \text{for every } k, l \in \{1, \cdots, N\}.
\]
Example: Geographic Bottleneck

- Two complete graphs G_1 and G_2 with N vertices.
- $v_1 \in G_1$, $v_2 \in G_2$, $v_1 \sim v_2$.
- For $i \sim j$, $M_{i,j} = \frac{1}{N}$.
- $U_\infty = \frac{c}{N}$ for some $c > 0$.

Proposition

Then for any two neighbours $i, j \in G$

$$1 - \mathbb{E} \left(\exp(-2U_\infty \tau_{ij}) \right) = \begin{cases} \frac{c}{1+c} + o(1) & \text{if } i, j \in G_1, \text{ or if } i, j \in G_2 \\ 1 - \frac{1}{N} + o\left(\frac{1}{N}\right) & \text{if } i = v_1 \text{ and } j = v_2 \end{cases}$$
Part III: Idea of the proof
A population based model

- Since $u, m_{i,j} \ll \frac{1}{n_i}, \frac{1}{s}$, intra-subpopulation diversity can be neglected.

- As $\gamma \rightarrow 0$ (ϵ fixed): Mutiscale Moran model. Slow dynamics at the inter-population level. Fast dynamics at the intra-population level.

This allows to approximate the IBM by the following population based model (PBM).
A population based model

When $\gamma \to 0$ (scaling parameter for mutation and migration) and ϵ remains fixed, each island is represented by a single chromosome indexed from $\{1, \cdots, N\}$. Two types of transition:

→ **Mutation** For every island i, locus k, fix a mutation at rate U_∞.

→ **Migration**

1. Start with 1 migrant individual in a monomorphic resident population of size n_j^ϵ. Define F_j^ϵ to be the random set of loci at which the migrant allele fixates.

2. At rate $\frac{1}{\epsilon} M_{ij}$, fixate the migrant alleles (island i) in resident population (island j) at a random set of loci, where the random set of loci is distributed as F_j^ϵ.
Genetic partition

- As $\gamma \to 0$, the IBM converges to the PBM (indexed by the inverse population size ϵ).
- In the PBM, at every locus $k \in \{1, \cdots, l\}$, types induce a partition of the meta-population denoted by $\Pi^\epsilon_k(t)$:

\[
\Pi^\epsilon_1(t) = \{i\}\{j, k\} \\
\Pi^\epsilon_4(t) = \{i, j\}\{k\}
\]

The genetic partition vector $\Pi^\epsilon(t) = (\Pi^\epsilon_m(t); m \in \{1, \cdots, l\})$ describes the genetic composition of the population at time t.

Some properties of the genetic partition vector

- For every $k \in \{1, \cdots, l\}$, $(\Pi_{k}^{\epsilon}(t); t \geq 0)$ is a Markov process on the set of partitions.

 (mutation) island i is singled out at rate U_{∞} (i takes on a new type).

 (migration) with rate

 $$M_{i,j} \times \frac{1}{\epsilon n_{j}^{\epsilon}}$$

 displace j in the block containing i (j inherits the type of i)

- **Stationarity:** For every $m \leq n$, Π_{m}^{ϵ} is identical in law to Π_{n}^{ϵ}.

- Non trivial correlation between loci: a single migration event has an impact on several loci simultaneously.

- Cornerstone of the approach: **ergodic theorem along the sequence when $\epsilon \rightarrow 0$.**

- For all $\Pi \in (\mathcal{P}_{N})^{l}$, $X(\Pi) = \frac{1}{l} \sum_{k \leq l} \delta_{\Pi_{k}}$, is the empirical measure associated to the “sample” Π_{1}, \cdots, Π_{l}. In the following,

 $$\xi_{t}^{\epsilon} = X(\Pi^{\epsilon}(t))$$
Ergodic theorem along the chromosome

Theorem 2 (Miro Pina, S.)

Assume \(\exists \, P^0 \in \mathcal{M}_N \) s.t. \(X(\Pi^\epsilon(0)) \xrightarrow[\epsilon \to 0]{} P^0 \). Then

\[
(\xi^\epsilon_t; \ t \geq 0) \xrightarrow[\epsilon \to 0]{} (P_t; \ t \geq 0)
\]

in distribution in the weak topology,

where \(P \) is a deterministic probability measure on the space of partitions. More precisely, \(P \) solves the forward Kolmogorov equation associated to a one-locus Moran model, i.e.,

\[
\frac{d}{ds}P_s = t \, GP_s
\]

with initial condition \(P_0 = P^0 \), where \(G \) is the generator describing the dynamics of the partition at an arbitrary locus on the chromosome.
Proof of Thm 1 based on Thm 2

- Define \(d_t^e = \frac{1}{l} \# \text{segregating loci between } i \text{ and } j \text{ at time } t \), the genetic distance in the PBM. Then

\[
 d_t^e(i, j) = \frac{1}{l} \sum_{k=1}^{l} 1_{i \not\sim \pi_k(t)} j
\]

\[
 = \xi_t^e(\{\pi \in \mathcal{P}_N : i \not\sim \pi j\})
\]

- By Theorem 2, \(d_t^e(i, j) \to P_t(\{\pi \in \mathcal{P}_N : i \not\sim \pi j\}) \).

- Finally,

\[
P_t(\{\pi \in \mathcal{P}_N : i \not\sim \pi j\}) = 1 - \mathbb{E}(\exp(-2U_\infty \tau_{ij}))
\]

using a standard duality principle.
Thank you!